Brain-computer interface based on mutual learning helps tetraplegics in avatar race

May 14, 2018

BCIs, which use the electrical activity in the brain to control an object, have seen growing use in people with high spinal cord injuries, for communication (by controlling a keyboard), mobility (by controlling a powered wheelchair), and daily activities (by controlling a mechanical arm or other robotic device).

Typically, the electrical activity is detected at one or more points of the surface of the skull, using non-invasive electroencephalographic electrodes, and fed through a computer program that, over time, improves its responsiveness and accuracy through learning.

As machine-learning algorithms have become both faster and more powerful, researchers have largely focused on increasing decoding performance by identifying optimal pattern recognition algorithms. The authors hypothesized that performance could be improved if the operator and the machine both engaged in learning their mutual task.

To test this hypothesis, the authors enlisted two subjects, both tetraplegic adult men, for training with a BCI system designed to detect multiple brain wave patterns. Training took place over several months, culminating in an international competition, called the Cybathlon, in which they competed against ten other teams. Each participant controlled an on-screen avatar in a multi-part race, requiring mastery of separate commands for spinning, jumping, sliding, and walking without stumbling. The two subjects marked the best three times overall in the competition, one of them winning the gold medal and the other holding the tournament record

Electroencephalography recording of the subjects during their training indicated they adapted normal brain wave patterns related to imagined movements, called sensorimotor rhythms, to control the avatar, and that these patterns became stronger over time, indicating that the subjects were learning how to better control the BCI during the training. While some degree of learning likely takes place with even the simplest BCIs, the authors believe they have maximized the chances for human learning by infrequent recalibration of the computer, leaving time for the human to better learn how to control the sensorimotor rhythms that would most efficiently evoke the desired avatar movement. Training in preparation for a competition may also contribute to faster learning, the authors propose.

ScienceDaily has the full story

Sponsored Recommendations

The Race to Replace POTS Lines: Keeping Your People and Facilities Safe

Don't wait until it's too late—join our webinar to learn how healthcare organizations are racing to replace obsolete POTS lines, ensuring compliance, reducing liability, and maintaining...

Transform Care Team Operations & Enhance Patient Care

Discover how to overcome key challenges and enhance patient care in our upcoming webinar on September 26. Learn how innovative technologies and strategies can transform care team...

Prior Authorization in Healthcare: Why Now?

Prepare your organization for the CMS 2027 mandate on prior authorization via API. Join our webinar to explore investment insights, real-time data exchange, and the benefits of...

Securing Remote Radiology with the Zero Trust Exchange

Discover how the Zero Trust Exchange is transforming remote radiology security. This video delves into innovative solutions that protect sensitive patient data, ensuring robust...