Inside a SamSam ransomware attack

June 25, 2018

Hospitals, municipal governments, and schools are bracing themselves, anxiously aware that they could be the next target of SamSam ransomware’s ongoing campaign of destruction and extortion.

According to an updated warning issued by the U.S. Department of Health and Human Services, a new variant of SamSam (also referred to as SamSa and Samas) has been deployed in more than eight unique cyberattacks in the U.S. so far in 2018. These include an industrial controls system (ICS), two hospitals, the City of Atlanta, and the Colorado Department of Transportation. Colorado DOT was attacked twice; it took six weeks, millions of dollars, and hundreds of cybersecurity specialists, including the FBI, to get the department (2,000 computers) back to 80% functionality. What would happen to organizations with fewer resources in the aftermath of a SamSam hit?

In the latest reported attack, an Indiana healthcare provider network discovered it had been compromised on May 17 and is now working with the FBI; it did not disclose whether it paid the ransom. Indeed, many public-sector victims decide it is better to concede to hacker demands immediately than to risk extended recovery time (not to mention complications). As dependency on real-time data and networked systems becomes the norm, recovery speed is critical. Ransomware exploits this vulnerability for straightforward financial gain.

SamSam and its variants, active since 2016, have evident commonalities; as more attacks are investigated, we have gained insight into their tactics. SamSam campaigns do not target the most lucrative enterprises. Instead, they extort organizations that have a near-zero tolerance for downtime: public-facing civil sector and healthcare organizations. The pressure is on when lives, physical health, critical infrastructure, and public safety are at risk. The longer it takes, the higher the stakes.

While regular patching, security updates, and consistent monitoring can be effective defenses, let’s assume the obvious: The perimeter will eventually be breached. SamSam attackers specialize in scanning for exploits and known vulnerabilities—public network protocols, in particular—when targeting a victim. An analysis of SamSam incidents suggests that the ransomware is “typically deployed after the threat actors have exploited known vulnerabilities on perimeter systems to gain access to a victim’s network.”

The hackers behind SamSam are sophisticated and appear to be learning more tricks as they go along. Their latest scheme is to spread thousands of copies of malware on a single network all at once and then demand “per computer” or “volume discount” ransom amounts to fix what they’ve broken.

Let’s take a closer look at how ransomware attackers use network tools and stolen identities once they are inside the network to turn a device-level compromise into an enterprise-level takedown. According to the Verizon 2018 Data Breach Investigations Report, the use of stolen credentials is the No. 1 most common action attackers take during a successful breach. Privilege misuse is fourth on the list.

SamSam follows this playbook. It uses tools such as Mimikatz to steal valid user credentials and common IT management tools to move malware to new hosts. Attackers and their malware are increasingly reliant on Mimikatz and other common tools, such as PsExec—associated with everything from PoS malware to webshells—to spread through a network and do damage. Once hackers have compromised a set of privileged credentials, they use the stolen identity to access additional assets in the network. Next, attackers use legitimate administrator tools, such as PsExec or WMIexec, to remotely run code on additional machines.

When it comes to stringing together vulnerabilities to avoid detection, prolong dwell time, and infect larger numbers of machines, hackers are innovative. For example, Remote Desktop Protocol (RDP), a standard Microsoft component, has been identified as a weak point that hackers seek because it provides an easy channel of attack. All they have to do is crack the password and they are free to move laterally, execute malware, and encrypt data.

DarkReading has the full article

Sponsored Recommendations

A Cyber Shield for Healthcare: Exploring HHS's $1.3 Billion Security Initiative

Unlock the Future of Healthcare Cybersecurity with Erik Decker, Co-Chair of the HHS 405(d) workgroup! Don't miss this opportunity to gain invaluable knowledge from a seasoned ...

Enhancing Remote Radiology: How Zero Trust Access Revolutionizes Healthcare Connectivity

This content details how a cloud-enabled zero trust architecture ensures high performance, compliance, and scalability, overcoming the limitations of traditional VPN solutions...

Spotlight on Artificial Intelligence

Unlock the potential of AI in our latest series. Discover how AI is revolutionizing clinical decision support, improving workflow efficiency, and transforming medical documentation...

Beyond the VPN: Zero Trust Access for a Healthcare Hybrid Work Environment

This whitepaper explores how a cloud-enabled zero trust architecture ensures secure, least privileged access to applications, meeting regulatory requirements and enhancing user...