Mount Sinai researchers use “blacklist” computing concept as novel method to streamline genetic analysis

Dec. 26, 2018

Researchers at the Icahn School of Medicine at Mount Sinai and The Rockefeller University have discovered a new use for a long-standing computational concept known as “blacklisting,” which is commonly employed as a form of access or spam control, blocking unwanted files and messages. Using blacklisting as a filter to single out genetic variations in patient genomes and exomes that do not cause illness, researchers have successfully streamlined the identification of genetic drivers of disease. This method is described in the December 2018 issue of Proceedings of the National Academy of Science of the United States of America.

In whole-exome sequencing—the process of identifying variations in protein-coding genes to determine the genetic underpinnings of any given illness—tens of thousands of genetic variants are identified, but only a few are deemed pathogenic, meaning disease-causing. Traditionally, in order to identify pathogenic mutations, scientists must sift through considerable amounts of data and remove genetic variants that are unlikely to cause disease, slowing down the process of genetic analysis and, subsequently, clinical treatment. To address this cumbersome process, researchers from the Icahn School of Medicine and The Rockefeller University investigated and subsequently identified a large portion of the non-pathogenic genetic variants, from which the “blacklist” was generated. Following this, they developed a program, known as ReFiNE, and a corresponding webserver that other researchers can use to automate the creation of their own blacklists.

“Until now, there has been no viable published method for filtering out non-pathogenic variants that are common in human genomes and absent from current genomic databases,” said Yuval Itan, PhD, Assistant Professor of Genetics and Genomic Sciences at the Icahn School of Medicine and senior author of the publication. “Using the blacklist, researchers will now be able to remove genetic ‘noise’ and focus on true disease-causing mutations.”

Noting the data-centric society we live in, Dr. Yuval says efficiency is key. His hope is that this contemporary tool can be used by clinicians, researchers, and scientists across the globe to conduct genetic analysis more quickly and accurately, helping to accelerate the pace of genomic medicine.

PRWeb has the release

Sponsored Recommendations

Six Cloud Strategies to Combat Healthcare's Workforce Crisis

The healthcare workforce shortage is a complex challenge, but cloud communications offer powerful solutions to address it. These technologies go beyond filling gaps—they are transformin...

Transforming Healthcare with AI Powered Solutions

AI-powered solutions are revolutionizing healthcare by enhancing diagnostics, patient monitoring, and operational efficiency - learn how to integrate these innovations into your...

Enhancing Healthcare Through Strategic IT and AI Innovations

Learn how strategic IT and AI innovations are transforming healthcare - join Tomas Gregorio as he explores practical applications that enhance clinical decision-making, optimize...

The Intersection of Healthcare Compliance and Security in the Age of Deepfakes

As healthcare regulations struggle to keep up with rapid advancements in AI-driven threats like deepfakes, the security gaps have never been more concerning.