Observational ‘Big Data’ Studies Using EHRs Identify Therapeutic Effects of Drug Combinations

Aug. 17, 2015
“Big data” studies involving the electronic medical records of thousands of patients over many years are starting to reveal new insights about the impact of drug combinations that may be unattainable through traditional clinical trials.

“Big data” studies involving the electronic medical records of thousands of patients over many years are starting to reveal new insights about the impact of drug combinations that may be unattainable through traditional clinical trials.

A study led by researchers from the Regenstrief Institute and Indiana University has found that a drug commonly prescribed to conserve potassium in the blood also significantly lowers blood pressure when taken in conjunction with a diuretic frequently prescribed to patients with hypertension. The combination of the two drugs, both available as generics, has been shown to consistently amplify blood pressure reduction in patients with or without the presence of other antihypertensive agents such as ACE inhibitors and calcium channel blockers.

Using de-identified information from the electronic medical records of 17,291 hypertensive patients who were prescribed the drug hydrochlorothiazide with or without triamterene between 2004 and 2012, the researchers have demonstrated triamterene's ability to enhance the blood pressure-lowering effect of hydrochlorothiazide, a commonly prescribed diuretic.

"This study is a perfect example of how we can learn about the previously unknown therapeutic effects of drugs from big data. In this case, big electronic medical record data are being used to answer questions that may otherwise be unanswerable," said Wanzhu Tu, Ph.D., first author of the new study published online ahead of print in the Journal of General Internal Medicine, in a prepared statement.

"It is unlikely that a large clinical trial would be conducted to reexamine the blood pressure effect of triamterene, a drug that has been on the market since 1965,” he said. “Yet smaller clinical trials simply do not provide sufficient power to determine the drug's effect. Observational studies based on big data, like ours, provide a viable alternative."

Tu is a Regenstrief Institute investigator, an IU Center for Aging Research scientist and a professor of biostatistics at the IU School of Medicine.

Sponsored Recommendations

Six Cloud Strategies to Combat Healthcare's Workforce Crisis

The healthcare workforce shortage is a complex challenge, but cloud communications offer powerful solutions to address it. These technologies go beyond filling gaps—they are transformin...

Transforming Healthcare with AI Powered Solutions

AI-powered solutions are revolutionizing healthcare by enhancing diagnostics, patient monitoring, and operational efficiency - learn how to integrate these innovations into your...

Enhancing Healthcare Through Strategic IT and AI Innovations

Learn how strategic IT and AI innovations are transforming healthcare - join Tomas Gregorio as he explores practical applications that enhance clinical decision-making, optimize...

The Intersection of Healthcare Compliance and Security in the Age of Deepfakes

As healthcare regulations struggle to keep up with rapid advancements in AI-driven threats like deepfakes, the security gaps have never been more concerning.