UCSF Researchers Log 2.5M Patient Alarms in One Month

Oct. 28, 2014
With the goal to define the detailed causes as well as potential solutions for the widespread issue of alarm fatigue in hospitals, researchers at the University of California, San Francisco (UCSF) studied 2.5 million patient monitoring alarms in just one month.

With the goal to define the detailed causes as well as potential solutions for the widespread issue of alarm fatigue in hospitals, researchers at the University of California, San Francisco (UCSF) studied 2.5 million patient monitoring alarms in just one month.

In the study published recently in PLOS ONE, researchers stored monitor data on 461 adults treated in five intensive care units (ICU) at UCSF Medical Center over a 31-day period. The data came from electrocardiogram (ECG) leads (electric cables attaching the electrodes to the recorder); pressure, blood oxygen saturation and respiration waveforms; and user settings and alarms, among other technology.

During that time period, 2,558,760 unique alarms were recorded, many caused by a complex interplay of inappropriate user settings, patients' conditions and computer algorithm deficiencies. This includes a subset of 1,154,201 arrhythmia alarms, of which 88.8 percent were determined to be false positives caused by the algorithm deficiencies.

Alarm fatigue occurs when clinicians become desensitized to the constant noise of alarms and ignore them or turn them off. Among the numerous detrimental results are anxiety in hospital staff and patients, sleep deprivation among hospitalized patients, and missed life-threatening heart rhythm events. The issue of alarm fatigue has become so significant that The Joint Commission, a national organization that accredits hospitals, named it a National Patient Safety Goal. This goal requires hospitals to establish alarm safety as a priority, identify the most important alarms and establish policies to manage alarms by January 2016.

"There have been news stories about patient deaths due to hospital staff silencing cardiac monitor alarms and alerts from federal agencies warning about alarm fatigue," senior author Barbara Drew, Ph.D., R.N., UCSF, said in a statement. “However, there have been little data published on the topic to inform clinicians about what to do about the problem. Our study is the first to shed light on cardiac monitor alarm frequency, accuracy, false alarm causes and strategies to solve this important clinical problem."

Based on these findings and earlier studies, the researchers suggest that medical devices focus on using all available ECG leads to identify the non-disruptive leads and the leads with adequate QRS waveform amplitude. These devices also should provide prompts to aid in more appropriate tailoring of alarm settings to individual patients. And, atrial fibrillation alarms should be limited to new onset and termination of the arrhythmia, with delays for ST-segment and other parameter alarms able to be configured, the researchers concluded.

"Nurses and patients are barraged by a staggering number of monitor alarms that could be resolved by improved computer algorithms," Drew said. "Our results shed light on the high prevalence of alarms that are mostly false and provide insights into the causes of so many false alarms, along with suggestions for device improvement."

Read the source article at EurekAlert!

Sponsored Recommendations

A Cyber Shield for Healthcare: Exploring HHS's $1.3 Billion Security Initiative

Unlock the Future of Healthcare Cybersecurity with Erik Decker, Co-Chair of the HHS 405(d) workgroup! Don't miss this opportunity to gain invaluable knowledge from a seasoned ...

Enhancing Remote Radiology: How Zero Trust Access Revolutionizes Healthcare Connectivity

This content details how a cloud-enabled zero trust architecture ensures high performance, compliance, and scalability, overcoming the limitations of traditional VPN solutions...

Spotlight on Artificial Intelligence

Unlock the potential of AI in our latest series. Discover how AI is revolutionizing clinical decision support, improving workflow efficiency, and transforming medical documentation...

Beyond the VPN: Zero Trust Access for a Healthcare Hybrid Work Environment

This whitepaper explores how a cloud-enabled zero trust architecture ensures secure, least privileged access to applications, meeting regulatory requirements and enhancing user...