Wearable throat sensor holds promise for stroke rehabilitation

Feb. 19, 2018

The sensor, developed in the lab of Northwestern University, by engineering professor John A Rogers, in partnership with Shirley Ryan AbilityLab, joins similar stretchable electronics created by Rogers that can be used in advanced medical care and are portable enough to be worn outside the hospital, even during extreme exercise. The sensors stick directly to the skin, moving with the body and providing detailed health metrics including heart function, muscle activity, and quality of sleep.

“Stretchable electronics allow us to see what is going on inside patients’ bodies at a level traditional wearables simply cannot achieve,” Rogers said. “The key is to make them as integrated as possible with the human body.”

Rogers’ new bandage-like throat sensor measures patients’ swallowing ability and patterns of speech. The sensors aid in the diagnosis and treatment of aphasia, a communication disorder associated with stroke.

Tools traditionally used by speech-language therapists to monitor patients’ speech function—such as microphones—cannot distinguish between patients’ voices and ambient noise.

Shirley Ryan of AbilityLab, a research hospital in Chicago, uses the throat sensor in conjunction with electronic biosensors on the legs, arms, and chest to monitor stroke patients’ recovery progress. The intermodal system of sensors streams data wirelessly to clinicians’ phones and computers, providing a quantitative, full-body picture of patients’ advanced physical and physiological responses in real time.

Because the sensors are wireless, they eliminate barriers posed by traditional health monitoring devices in clinical settings. Patients can wear them after discharge from hospital, allowing doctors to understand how their patients are functioning in the real world.

Rogers presented research on the implications of stretchable electronics for stroke recovery treatment on Feb.17, at the American Association for the Advancement of Science (AAAS) annual meeting in Austin.

The Engineer has the full article

Sponsored Recommendations

A Cyber Shield for Healthcare: Exploring HHS's $1.3 Billion Security Initiative

Unlock the Future of Healthcare Cybersecurity with Erik Decker, Co-Chair of the HHS 405(d) workgroup! Don't miss this opportunity to gain invaluable knowledge from a seasoned ...

Enhancing Remote Radiology: How Zero Trust Access Revolutionizes Healthcare Connectivity

This content details how a cloud-enabled zero trust architecture ensures high performance, compliance, and scalability, overcoming the limitations of traditional VPN solutions...

Spotlight on Artificial Intelligence

Unlock the potential of AI in our latest series. Discover how AI is revolutionizing clinical decision support, improving workflow efficiency, and transforming medical documentation...

Beyond the VPN: Zero Trust Access for a Healthcare Hybrid Work Environment

This whitepaper explores how a cloud-enabled zero trust architecture ensures secure, least privileged access to applications, meeting regulatory requirements and enhancing user...