New medical devices help doctors with disabilities

April 18, 2018

Instead of using a traditional stethoscope or otoscope to examine a patient, one physician-in-training at the University of Michigan uses a new device, with a long, flexible wire and camera at its tip. A live video feed plays important diagnostic information back on her cell phone.

The specially created device allows this medical student to overcome the challenges of performing standard patient examinations with limited mobility.

After a swimming accident at age 15 left Molly Fausone paralyzed from the chest down with limited use of her hands, she wanted to stay away from hospitals as much as she could. She spent the first half of her college career at Stanford University exploring her options, thinking maybe she would become an engineer.

“I wanted to find something I was excited about, and when I took a course in human biology I knew that was what I wanted to do,” Fausone said.

Fausone is now a third-year medical student at U-M and is determined to become a doctor despite the physical limitations of her disability. She decided on U-M mainly because the administration was willing to work with her and help her overcome challenges she would face.

Though doctors treat patients with all kinds of disabilities, illnesses or injuries, doctors themselves rarely have disabilities. While more than 20% of Americans live with disabilities, under 2% of practicing physicians do.

“Very few universities accept first year medical students who are paraplegic or quadriplegic,” said David Burke, professor and interim chair of the Department of Human Genetics. “Historically, certain people have been dissuaded from areas of medicine.

Recognizing that even a straightforward patient examination can pose a major challenge, Burke and David Lorch, program director for the Global Challenges for the Third Century Initiative on Deep Monitoring, started brainstorming, eventually creating a device that allows Fausone to examine a patient’s skin, eyes, ears, nose, throat, and mouth from a distance.

The device has a long, flexible wire and a camera in its speculum, which is the cone-shaped piece at the end of a standard medical otoscope used to examine a patient’s ears. The system displays images on any mobile device.

Burke and Lorch are working on adding other features to the device. Adding video recording, for example, would provide a variety of opportunities for all doctors, such as looking back at older recordings to see if a condition has changed, sending the recording to a specialist, or using it to teach medical students.

The live video stream can enhance and zoom in on images to facilitate the physician’s examination. The device has its own WiFi network to ensure recordings are sent safely.

Another challenge Fausone faces is standard neurological examinations. These require the physician to exert significant force, such as when the examiner asks the patient to press against his or her hand with the same amount of force.

The device would capture the amount of force exerted, allowing for more accurate measurement compared to a physician’s subjective assessment of the neurological examination. Both Burke and Lorch also noted this device could help create more standardization in the medical field.

The goal is for these devices to be used by all physicians, regardless of whether they have a physical limitation or disability. The option to use such medical devices may open up the opportunities of a medical career for many individuals who otherwise would not be able to meet its demands.

University of Michigan has the full article

Sponsored Recommendations

Enhancing Remote Radiology: How Zero Trust Access Revolutionizes Healthcare Connectivity

This content details how a cloud-enabled zero trust architecture ensures high performance, compliance, and scalability, overcoming the limitations of traditional VPN solutions...

Spotlight on Artificial Intelligence

Unlock the potential of AI in our latest series. Discover how AI is revolutionizing clinical decision support, improving workflow efficiency, and transforming medical documentation...

Beyond the VPN: Zero Trust Access for a Healthcare Hybrid Work Environment

This whitepaper explores how a cloud-enabled zero trust architecture ensures secure, least privileged access to applications, meeting regulatory requirements and enhancing user...

Enhancing Remote Radiology: How Zero Trust Access Revolutionizes Healthcare Connectivity

This content details how a cloud-enabled zero trust architecture ensures high performance, compliance, and scalability, overcoming the limitations of traditional VPN solutions...