Technology used to map Mars now measuring effect of treatment on tumors

April 24, 2018

A machine learning approach for assessing images of the craters and dunes of Mars, which was developed at The University of Manchester, has now been adapted to help scientists measure the effects of treatments on tumors.

Because tumors are not uniform and different parts of them change at varying speeds, it is difficult for researchers to see what effects their treatments are having against a background of changes that would happen anyway.

Typically, to obtain meaningful results scientists have to look at average changes in tumors using many samples, often in animals. With conventional statistical methods, it can be difficult to assess the effects of treatment on individuals, as would be required for personalized medicine.

The machine learning technique was developed at Manchester to help planetary scientists map features on planets such as Mars. It was designed to better understand the errors and uncertainties of observations, thereby enabling researchers to present their findings with confidence.

The Manchester team, from the Division of Informatics, Imaging & Data Sciences worked in collaboration with Dr James O’Connor, Head of Imaging within the Manchester Cancer Research Centre on studies of lab mice. They applied their machine learning technique, called Linear Poisson Modeling, to the samples and were able to demonstrate a four-fold increase in the precision of tumor change measurements that detected the beneficial effects of cancer therapies.

Dr Neil Thacker, from the University’s Division of Informatics, Imaging & Data Sciences, said: “The results of this study show that we can present findings which researchers can be much more certain of. This means you can get the same quality of data from one sample instead of 16.”

“This has important implications for research, meaning that instead of using 16 mice, in some studies only one is needed. This could help reduce the use of lab mice in medical research. It also opens up the potential for this technique to be used in patients by quickly and confidently identifying if drugs are having a specific effect on their tumors.”

Linear Poisson Modeling works by learning patterns within data and how they can change. Unlike other machine learning methods, such as the popular Deep Learning, it can also assess the effects of errors in data, providing as an additional output predictions of how precise its results are. The improved modeling of data also means that fewer samples are needed to provide highly accurate results.

The University of Manchester has the full article

Sponsored Recommendations

Enhancing Remote Radiology: How Zero Trust Access Revolutionizes Healthcare Connectivity

This content details how a cloud-enabled zero trust architecture ensures high performance, compliance, and scalability, overcoming the limitations of traditional VPN solutions...

Spotlight on Artificial Intelligence

Unlock the potential of AI in our latest series. Discover how AI is revolutionizing clinical decision support, improving workflow efficiency, and transforming medical documentation...

Beyond the VPN: Zero Trust Access for a Healthcare Hybrid Work Environment

This whitepaper explores how a cloud-enabled zero trust architecture ensures secure, least privileged access to applications, meeting regulatory requirements and enhancing user...

Enhancing Remote Radiology: How Zero Trust Access Revolutionizes Healthcare Connectivity

This content details how a cloud-enabled zero trust architecture ensures high performance, compliance, and scalability, overcoming the limitations of traditional VPN solutions...