New AI outperforms In Stanford medical study

Sept. 10, 2018

Stanford University School of Medicine and Unanimous AI presented a new study showing that a small group of doctors, connected by intelligence algorithms that enable them to work together as a “hive mind,” could achieve higher diagnostic accuracy than the individual doctors or machine learning algorithms alone. The technology used is called Swarm AI and it empowers networked human groups to combine their individual insights in real-time, using AI algorithms to converge on optimal solutions.

As presented at the 2018 SIIM Conference on Machine Intelligence in Medical Imaging, the study tasked a group of experienced radiologists with diagnosing the presence of pneumonia in chest X-rays. This is one of the most widely performed imaging procedures in the U.S., with more than 1 million adults hospitalized with pneumonia each year. But, despite this prevalence, accurately diagnosing X-rays is highly challenging with significant variability across radiologists. This makes it both an optimal task for applying new AI technologies, and an important problem to solve for the medical community.

When generating diagnoses using Swarm AI technology, the average error rate was reduced by 33% compared to traditional diagnoses by individual practitioners. This is an exciting result, showing the potential of AI technologies to amplify the accuracy of human practitioners while maintaining their direct participation in the diagnostic process.

The Swarm AI system, which combines real-time human insights with AI technology, was 22% more accurate in binary classification than the software-only CheXNet system.  In other words, by connecting a group of radiologists into a medical “hive mind”, the hybrid human-machine system was able to outperform individual human doctors as well as the state-of-the-art in deep-learning derived algorithms.

In addition to improving the accuracy of radiological diagnoses, the potential benefits of Swarm AI technology also include generating more accurate “ground truth” datasets for the training of algorithmic systems like CheXNet.  In this way, a combination of swarming technologies and deep learning may lead to future breakthroughs.

Swarm AI technology connects networked groups of human participants into real-time intelligent systems modeled after swarms in nature, emulating the way birds flock, fish school, and bees swarm to amplify their collective intelligence. The technology builds a “hive mind” of networked participants, moderated by AI algorithms, to combine the group’s knowledge, wisdom, insights, and intuition into an optimized output.

HMT has the full release

Sponsored Recommendations

Six Cloud Strategies to Combat Healthcare's Workforce Crisis

The healthcare workforce shortage is a complex challenge, but cloud communications offer powerful solutions to address it. These technologies go beyond filling gaps—they are transformin...

Transforming Healthcare with AI Powered Solutions

AI-powered solutions are revolutionizing healthcare by enhancing diagnostics, patient monitoring, and operational efficiency - learn how to integrate these innovations into your...

Enhancing Healthcare Through Strategic IT and AI Innovations

Learn how strategic IT and AI innovations are transforming healthcare - join Tomas Gregorio as he explores practical applications that enhance clinical decision-making, optimize...

The Intersection of Healthcare Compliance and Security in the Age of Deepfakes

As healthcare regulations struggle to keep up with rapid advancements in AI-driven threats like deepfakes, the security gaps have never been more concerning.