Drug-filled, 3-D printed dentures could fight off infections

April 26, 2018

Nearly two-thirds of the U.S. denture-wearing population suffer frequent fungal infections that cause inflammation, redness and swelling in the mouth.

To better treat these infections, called denture-related stomatitis, University at Buffalo researchers have turned to 3-D printers, using the machines to build dentures filled with microscopic capsules that periodically release Amphotericin B, an antifungal medication.

A study describing the work, recently published in Materials Today Communications, found that the drug-filled dentures can reduce fungal growth. Unlike current treatment options, such as antiseptic mouthwashes, baking soda and microwave disinfection, the new development can also help prevent infection while the dentures are in use.

The technology allows clinicians to rapidly create customized dentures chair-side, a vast improvement over conventional manufacturing that can vary from a few days to weeks, says Praveen Arany, DDS, PhD, the study’s senior author and an assistant professor in the Department of Oral Biology in the UB School of Dental Medicine, who also has an appointment in UB’s Department of Biomedical Engineering, a joint program in the Jacobs School of Medicine and Biomedical Sciences at UB and the School of Engineering and Applied Sciences.

Applications from this research, says Arany, could be applied to various other clinical therapies, including splints, stents, casts, and prosthesis.

UB researchers printed their dentures with acrylamide, the current go-to material for denture fabrication. The study sought to determine if these dentures maintained the strength of conventional dentures and if the material could effectively release antifungal medication.

To test the strength of the teeth, researchers used a flexural strength testing machine to bend the dentures and discover their breaking points. A conventional lab-fabricated denture was used as a control. Although the flexural strength of the 3-D printed dentures was 35% less than that of the conventional pair, the printed teeth never fractured.

To examine the release of medication in the printed dentures, the team filled the antifungal agent into biodegradable, permeable microspheres. The microspheres protect the drug during the heat printing process, and allow the release of medication as they gradually degrade.

The investigation involved the development of an innovative form of acrylamide designed to carry antifungal payloads, and a novel syringe pump system to combine the dental polymer and microspheres during the printing process.

The dentures were tested with one, five and 10 layers of material to learn if additional layers would allow the dentures to hold more medication. The researchers found the sets with five and 10 layers were impermeable and were not effective at dispensing the medication. Release was not hindered in the more porous single layer, and fungal growth was successfully reduced.

The University at Buffalo has the full story

Sponsored Recommendations

ASK THE EXPERT: ServiceNow’s Erin Smithouser on what C-suite healthcare executives need to know about artificial intelligence

Generative artificial intelligence, also known as GenAI, learns from vast amounts of existing data and large language models to help healthcare organizations improve hospital ...

TEST: Ask the Expert: Is Your Patients' Understanding Putting You at Risk?

Effective health literacy in healthcare is essential for ensuring informed consent, reducing medical malpractice risks, and enhancing patient-provider communication. Unfortunately...

From Strategy to Action: The Power of Enterprise Value-Based Care

Ever wonder why your meticulously planned value-based care model hasn't moved beyond the concept stage? You're not alone! Transition from theory to practice with enterprise value...

State of the Market: Transforming Healthcare; Strategies for Building a Resilient and Adaptive Workforce

The U.S. healthcare system is facing critical challenges, including workforce shortages, high turnover, and regulatory pressures. This guide highlights the vital role of technology...