An artificial nerve system gives prosthetic devices and robots a sense of touch

June 4, 2018

The work, reported May 31 in Science, is a step toward creating artificial skin for prosthetic limbs, to restore sensation to amputees and, perhaps, one day give robots some type of reflex capability.

“We take skin for granted but it’s a complex sensing, signaling and decision-making system,” said Zhenan Bao, a professor of chemical engineering and one of the senior authors. “This artificial sensory nerve system is a step toward making skin-like sensory neural networks for all sorts of applications.”

This milestone is part of Bao’s quest to mimic how skin can stretch, repair itself and, most remarkably, act like a smart sensory network that knows not only how to transmit pleasant sensations to the brain, but also when to order the muscles to react reflexively to make prompt decisions.

The new Science paper describes how the researchers constructed an artificial sensory nerve circuit that could be embedded in a future skin-like covering for neuro-prosthetic devices and soft robotics. This rudimentary artificial nerve circuit integrates three previously described components.

The first is a touch sensor that can detect even minuscule forces. This sensor sends signals through the second component—a flexible electronic neuron. The touch sensor and electronic neuron are improved versions of inventions previously reported by the Bao lab.

Sensory signals from these components stimulate the third component, an artificial synaptic transistor modeled after human synapses. The synaptic transistor is the brainchild of Tae-Woo Lee of Seoul National University, who spent his sabbatical year in Bao’s Stanford lab to initiate the collaborative work.

Lee used a knee reflex as an example of how more-advanced artificial nerve circuits might one day be part of an artificial skin that would give prosthetic devices or robots both senses and reflexes.

In humans, when a sudden tap causes the knee muscles to stretch, certain sensors in those muscles send an impulse through a neuron. The neuron in turn sends a series of signals to the relevant synapses. The synaptic network recognizes the pattern of the sudden stretch and emits two signals simultaneously, one causing the knee muscles to contract reflexively and a second, less urgent signal to register the sensation in the brain.

The new work has a long way to go before it reaches that level of complexity. But in the Science paper, the group describes how the electronic neuron delivered signals to the synaptic transistor, which was engineered in such a way that it learned to recognize and react to sensory inputs based on the intensity and frequency of low-power signals, just like a biological synapse.

ScienceDaily has the full article

Sponsored Recommendations

Enhancing Healthcare Through Strategic IT and AI Innovations

Learn how strategic IT and AI innovations are transforming healthcare - join Tomas Gregorio as he explores practical applications that enhance clinical decision-making, optimize...

The Intersection of Healthcare Compliance and Security in the Age of Deepfakes

As healthcare regulations struggle to keep up with rapid advancements in AI-driven threats like deepfakes, the security gaps have never been more concerning.

Increasing Healthcare Security Behind and Beyond the Firewall

Read how 5 identity security solutions can help you protect against these threats while improving user experience and reducing costs.

Improve and Secure Healthcare Delivery with Digital Identity

Get a deep understanding of how Digital Identity can help secure your healthcare organization while offering seamless access to your growing portfolio of apps and APIs.